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Purpose : To develop  an application for predicting breast cancer malignancy, along 

with  its risk factors, from multiple diagnostic procedures  through the integrated 

utilization of cutting - edge deep learning models.  

Output : The efficiency of the  AI  models  embedded in the system  prove s that this 

technology can be used to predict breast cancer from a variety of sources, at the  

level  of experienced individuals in the field  in a clinically - supportive  channel .  

 

Abstract  

       This research project focuses on developing a web - based multi -

platform solution for augmenting prognostic stra tegies to diagnose breast 

cancer ( BC) , from a variety of different tests ,  including histology, 

mammography, cytopathology, and fine - needle aspiration cytology, all in 

an automated fashion. The respective application utilizes tensor - based 

data representations and deep learning architectural algorithms, to 

produce optimized models for the prediction of novel instances against 

each of these medical tests . This system has been designed in a way that 

all of its computation can be integrated seamlessly i nto a clinical 

setting, without posing any disruption to a clinicianôs productivity or 

workflow , but rather  an enhanc ement of  their capabilities. This software 

can make  the diagnostic process automated, standardized, faster, and even 

more accurate  than current benchmarks achieved by  both pathologists, and 

radiologists ,  which makes it  invaluable from a clinical standpoint to 

make well - informed diagnostic decisions  with nominal resources.  

Keywords: Breast Cancer, Early Detection, Improved Diagnostics, Deep Learning, AI ,  

Histology, Cytopathology, Mammography, Fine - Needle Aspiration  Cyto logy  

I. Background Research  

       BC is one of the most common  cancers among women worldwide. It 

accounts for 25% of all cancer cases , making it a significant public 

health problem in todayôs society [1, 4, 5] .  Complementarily,  however,  

according to the World Health Organization , there is a global shortage of 
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radiologists, with over 5 billion people in the world having little to no 

access to radiology services for proper diagnosis [2]. This alone 

motivates the need for a software that can diagno se  BC at t he standard of  

these experts , to minimize consequences posed by such shortage .  

Additionally, depending on oneôs location, both pathologists, and 

radiologists take anywhere from 1 - 16 weeks to finalize their diagnostic 

conclusions, which is precious time of the patient which could be used to 

get started on therapeutic endeavors if BC is present. C ountless 

researches have shown that t he early diagnosis of BC can improve the 

prognosis and chance s of survival significantly, as it can promote timely 

clinical treatment to patients  [6, 9] .  To solve this problem, m achine 

learning models have been applied , in hopes of trying  to exploit patterns 

and relationships among a large number of cases and predict the outcome 

of BC using historical cases stored in datasets. But in these cases ,  t he 

performance of most conventional classification systems is  dependent  on 

appropriate data representation and much of the efforts are dedicated to 

feature engineering, a difficult and time - consuming process that uses 

prior expert domain knowledge of the data to create useful features. 

However , deep learning , an adv ancement in traditional machine learning,  

can extract and organize the discriminative information from the data, 

not requiring the design of feature extractors by a domain expert.   

       Furthermore, even disregarding the shortages of radiologists, and 

th e time - resources constraints associated with BC diagnosis, there is 

still a major problem of the diagnostic predictions themselves being quite 

subjective.  

Several studies have shown that pathologis t - related diagnostic 

variabilistic error fares  very high f or BC, and the primary reason for 

this , in histology,  is the subtle differences of professional opinion on 

whether the specific morphological features present ,  meet the diagnostic 

criteria; these are often related to an individual pathologistôs threshold 

f or a particular diagnosis in a specific case  [ 3, 10 , 1 4] .  The average 

general agreement within breast pathologists, as derived by a prominent  

national study, shows an alarmingly low 68 .39 % (95% CI) i nterclass 

coefficient (ICC) agreement  [ 7, 11] .  

In addition to this, in the case of fine - needle aspirations, 

countless studies show a pathologistôs chance of accurate prediction to 

be in the ranges of 90 - 92%, with a specificity of 94 - 96%, and sensitivity 

of 93 - 95%, yielding relatively high false - negativ e rates of 10 - 15% [15]. 

This not only puts people at a huge risk, but also makes pointless a test 

that is designed to provide accurate results while decreas ing  patient 

trauma, expense, and be  able to be  performed on an outpatient basis .  

Also , recent ly  documented reports have  deemed that mammographers 

are very likely to overestimate tumor extent when studying a mammogram  

and that in general ,  they have anywhere between 60 - 75% overall accuracy 

in detecting BC from a mammogram, and that if they are asked to  review 

the same study as reviewed by them 5 years ago, they display 21 - 24.5% 

disagreement, which in itself is huge [12, 18]. This is also  very much 

correlated with the mammographic density parameters, namely, percent -

based density  (PBD), and b reast i magin g- r eporting and data system ( BI -

RADS5), which are computed from the mammogram and add crucial weightage 

to a diagnostic decision ï a separate deriv ation  from the report.  As 
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closely observed in one European study ( which s ought to compare individual 

density predictions with their  respective consensus ) ,  predictions for 

both PBD & BI - RADS5 tasks  come with a  very high  root mean squared error  

of around 17.548 , and alarming accuracy of 57.777%, respectively [1 3] .   

Despite these unsatisfactory results, both patholo gists, and 

radiologists continue to diagnose patients  of malignancy , who, 

unfortunately ,  end up suffering the repercussions , namely  late and  

misdiagnosis  [ 16, 17, 24] .  This is exactly what I would like to change , 

using my novel application .  

II. Related Work 

Recently , deep learning - based approaches using CNNs have begun to 

achieve impressive performance on medical tasks such as chest pathology 

identification in X - Ray and CT,  thoraco - abdominal lymph node detection ,  

and interstitial lung disease classification  [ 19, 25] . Currently, i n the 

context of breast masses , the detect ion of malignancy us es  a combination 

of manual feature extraction and traditional machine learning algorithms  

[ 20, 21 ] . Multiple works tackle the problem of breast lesion 

classification, but typically ado pt a multi - stage approach, by extracting  

hand - engineered semantic (such as calcification) and textual features, 

and classif y a partial  mammogram by extracting features from each view of 

th e breast, and combinin g them to output a prediction  [ 22] . Not only does 

this require  extensive pre - processing but also heavy clinical  domain 

knowledge ,  before training a CNN  [ 23] . To the best of my knowledge, this  

paper presents the  first work to directly classify pre - detected breast 

masses using CNN architectures  achieving  state - of - the - art results , from 

more than one diagnostic source in a single application .  

III. Deep Learning Module 1: Histology   

A. Dataset  

In the context of Histopathologic means of diagnosis, I utilized 

the publicly available BACH  dataset f or detecting BC malignancy , 

particularly Invasive (Infiltrating) Ductal Carcinoma ( IDC) ï which 

accounts for 80%+ of all BC diagnosis. This dataset  can be accessed from 

her e:  http://gleason.case.edu/webdata/jpi - dl - tutorial/IDC - regular - ps50 -

idx5.zip .  

This dataset  consist s of 162  H&E- stained  whole mount slide images 

(RGB- scaled  .tiff ) of BC specimens scanned at 40x.  To assign an 

aggressiveness grade to a whole mount sample, pathologists typically focus 

on the regions which contain the  IDC, and therefore each image has a 

corresponding list of labeled coordinates that enclose IDC and Non - IDC 

regions .  In total, there are 277,524  records of x & y coordinates with an 

associated label ,  of which 1 98,738 are IDC negative ,  and 78,786 are IDC 

positive .   

B. Preprocessing  

As a result  of this area - focus labelling , the pre processing steps 

for aut omatic aggressiveness grading first require  the delineat ion of  the 

exact regions of IDC  inside of a whole mount slide , which I implemented 

http://gleason.case.edu/webdata/jpi-dl-tutorial/IDC-regular-ps50-idx5.zip
http://gleason.case.edu/webdata/jpi-dl-tutorial/IDC-regular-ps50-idx5.zip
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by looping through each of the patch coordinate parameters, and storing 

each partition of the image into a separate Numpy array  (.npy ) file, and 

its label  (after OneHot Encoding into a list)  in a new CSV log explicitly 

linked to the arrayôs ID.  In this way ,  I was able to generate 277,524 

patches and resized them all to a unified size of 50*50px. A sample of 

these preprocessed patches from each class is  shown in Fig. 1 . I then 

enforced balanced classes by randomly deleting the difference between the 

IDC negative, and positive images, from the negative , as proved by Fig. 

2.  Then, after applying feat ure scaling, for the primary purpose of 

speeding up the training process, the data is split into training, and 

testing subsets , with a ratio of 80:20.  After the data preprocessing, the 

training tensor  has the shape, ( 126058 ,  50,  50,  3) , and the testing 

tensor , ( 31514, 50, 50, 3 ) , while the output tensor is expected to have 

the shape (2, 1).  

IDC (+)  

 

 

 

Non- IDC ( - )  

 

 
 

Figure 1: Displaying a sample of preprocessed histology image patches of both IDC positive and negative 

classes  

 

Previously Imbalanced   Now Balanced  

 

 

 

 

 

 

Figure 2: Displaying the correction of class imbalancement  

 

C. Model Structure  

In terms of structure, I have defined a custom Tensorflow model 

which starts by  accepting input tensors in batches of 128 images into a n 

initial  2D Convolutional layer. It is then followed up with 3 sets of 

Convolutions, Max Poolings, Batch Normalizations, Dropouts , and 

subsequently  trailed with several Dense layers .  All mentioned layers carry 

a ReLu activation function, except the last Dense layer, which is 

activated via SoftMax. The gradient descent optimization algorithm used 
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for this is called AdaDelta. A fully  graphed structure of the model is 

displayed in Fig. 3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Displaying  model s t r ucture  

 

D. Model Results   

See Fig. 4 for the validation results computed on the test set.  

  

Overall Accuracy  84.45458000760168%  

Area Under the Curve  84. 23874203482222 % 

Brier Score/Hamming Loss/Zero - One Classification Loss  0.155454199923983 3 

Average Hinge Loss (Non - Regularized)  0.655454199923983 3 

Logistic/Crossentropy Loss  0.363173205721041 1 

Cohenôs Kappa (Inter- Annotator Agreement)  0.9091600152033333  

Matthews Correlation Coefficient  0.6891128602975093  
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Figure 4: Listing v alidation data ;  revealing the  results  

 

Average time to predict BC presence from browser: 18 .2  seconds .  

As can be seen by considering accuracy alone, this model already 

performs far better than traditional pathologists, who, as stated earlier, 

diagnose BC from histopathological means with an accuracy of just 68.39%. 

This is an unprecedented 16.06458 % increase. Though there is limited data 

to compare other metrics, it can be inferred that this positive spike is 

also prevalent in the other stated losses and agreements .   

 Additionally, see Fig. 5 for a detailed Classification Report 

(gauging values of t he precision, recall, and f 1 score for each class) & 

Fig. 6 for a Confusion Matrix (computing class - based accuracies), both 

derived from the validation set.  Furthermore, Fig. 7 shows epoch - wise 

trends for training & testing accuracies & losses.  

  

 

 

 

 

 

 

 

 

Figure 5: Graphing c lassification report            Figure 6: Graphing confusion m atrix  

 

 

 

 

 

 

 

 

Figure 7: Plotting e poch - wise trends for training & testing accuracies & losses  

IV. Deep Learning Module 2: Mammography  
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A.  Dataset  

In the context of Mammographic al  means of diagnosis, I  trained 3 

separate models, 2 utiliz ing  the publicly available CBIS1 - DDSM dataset 

for detecting breast density (both percent - based  density [PBD] , and b reast 

i maging - r eporting and data s ystem  [BIRADS 5]  categori cal density )  from a 

mammogram, and the other using the publicly available MIAS - M dataset for 

detecting malignancy from these 2 density parameters. The CBIS1 - DDSM 

dataset can be accessed from here: https://wiki.cancer - imaging -

archive.net/display/Public/CBIS - DDSM, and the MIAS - M dataset from here: 

https://www.repository.cam.ac.uk/handle/1810/250394 .  

The CBIS1 - DDSM dataset contains 1182 ( 3328px x 4084px ) gray - scaled 

DICOM (.dcm) mammogram images, with associated PBD & BIRADS5 markings 

stored in the image format, while the MIAS - M dataset consists of a single 

CSV file with  936 records, and  2 columns for the 2 density parameters, 

with the prognostic  truth label (MALIGNANT/  BENIGN) for each .  There are 

452 MALIGNANT records, and 484 BENIGN.  

B.  Preprocessing  

Preprocessing for CBIS 1- DDSM dataset is quite extensive. Firstly, 

each DICOM file must be appropriately read and converted into a pixel 

array. Then the density parameter labels which are embedded in the image 

format need to be extracted and stored into a DataFrame  separately after 

OneHotEncoding the BIRADS5  labels  and accounting for outliers in  the PBD. 

Further, after implementing feature scaling, the images are resized into 

256*256px and saved as Numpy array (.npy) files. A sample of these 

preprocessed images is  shown in Fig. 8 .  These Numpy arrays are then run 

through a series of various augmentations, namely, random noise, 

log/gamma/sigmoid adjustments, rotations/flips, contrastings , exposure, 

etc., in order to  increas e the magnitude of the data  by more than 3x . The 

preprocessing  required for the MIAS - M dataset is nominal, apart from 

loading the data into a Pandas DataFrame.  All the data is finally split 

into training, and testing sub sets, with a ratio of 80:20.  After the data 

preprocessing, the training tensor  for the CBIS1 - DDSM dataset has the 

shape, ( 2564 ,  256 ,  256 ,  1) , and the testing tensor , ( 641, 256, 256, 1 ) , 

while the output tensor is expected to have the shape (2, 1) for both 

models collectively. In the same sense, the training tensor for the MIAS -

M dat aset is of shape (791, 2), while the rest (145, 2) is for testing.  
 

 

 

 

 

Figure 8: Displaying a sample of preprocessed mammogram images  

 

C.  Model Structure  

 The custom Tensorflow model structure/summary of the PBD  & 

BIRADS5 prediction model s can be seen in Fig .  9.  Both of these models 

https://wiki.cancer-imaging-archive.net/display/Public/CBIS-DDSM
https://wiki.cancer-imaging-archive.net/display/Public/CBIS-DDSM
https://www.repository.cam.ac.uk/handle/1810/250394
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utilize a TanH activation function for every layer, except the last, where 

the PBD model uses no activation , and the BIRADS5 model uses SoftMax.  

The third model, which is fed these numerical density outputs 

actu ally performs better as a traditional machine learning RandomForest 

classifier, as opposed to a deep learning classifier, presumabl y due to 

limited  training data . Fig .  10 graphical displays the central node of the 

RF Decision Tree.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Displaying PBD & BIRADS 5 model sô structure s  
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Figure 10: Displaying a single RF central decision t ree ôs model structure   
 

D. Modelsô Results 

* PBD Model  

See Fig. 11 for the validation results computed on the test set.  

  

Root Mean Squared Error (RMSE)  5.23211819 99999999  

Mean Squared Error (MSE) Loss  27.37506071288 8888 

Mean Absolute Error (MAE)  3.9 1111 24037821011  

Median Absolute Error (Med - AE)  4.701356 6669285345  

R2 Score  0.98 74539608491023  

Explained Variance Regression Score  0.9378082300000000  

Pearson Correlation Coefficient (Pearsonôs R) 0.9666666666666666  

Kendall Rank Correlation Coefficient (Kendallôs Tau) 0.8277829344387999  

Spearmanôs Rank Correlation Coefficient (Spearmanôs Rho) 0.8591247189612479  
 

Figure 11: Listing v alidation data ;  revealing the  results  

 

Average time to predict PBD from browser: 3.4 seconds.  

Judging by the RMSE, this model shows an increase of nearly 12.32, 

which is more than competitive for whatôs currently available.  

Also, see Fig. 12 for a linear comparison of actual values, and 

predicted values, and see Fig. 13 for a detailed comparison of the 
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residuals and fits.  Furthermore, Fig. 14 outlines the training & testing, 

RMSE & MAE loss trends, as the epochs progress .  

 

 

 

 

 

 

 

 

 

Figure 12: Graphing a ctuals vs. CNN predictions                    Figure 13: Graphing residuals vs. f its  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Plotting  RMSE/MAE loss progression h istory  

 

* BIRADS5 Model  

See Fig. 15 for the validation results computed on the test  set.  
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Overall Accuracy  88. 29837599999999 % 
 

Figure 15: Listing v alidation data ;  revealing the results  

 

Average time to predict BIRADS5 from browser: 1.8 seconds.  

Judging by the accuracy, this model shows an increase of nearly 

30.52, which is more than competitive for whatôs currently available.  

Additionally, see Fig. 16  for  a Confusion Matrix (computing class -

based accuracies) derived from the validation set.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Graphing c onfusion matrix  

  

* Overall Density - > Malignancy  Model  

See Fig. 17 for the validation results computed on the test set.  

  

Overall Accuracy  92. 19287411188888 % 

Area Under the Curve  81. 22222222222222 % 

Brier Score/Hamming Loss/Zero - One Classification Loss  0. 1398597151111111  

Average Hinge Loss (Non - Regularized)  0. 5555555555555555  

Logistic/Crossentropy Loss  0. 3279283202222222  
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Cohenôs Kappa (Inter- Annotator Agreement)  0.9 339725875029388  

Matthews Correlation Coefficient  0. 5347275390870328  
 

Figure 17: Listing v alidation data ;  revealing the results  

 

Average time to predict BC presence from browser: 12.1 seconds.  

As can be seen by considering accuracy alone, this model already 

performs far better than traditional radiologists, who, as stated earlier, 

diagnose BC from mammographic means with an accuracy of just 60 - 75%. This 

is an unprecedented 17.193 - 32.193 % increas e. Though there is limited data 

to compare other metrics, it can be inferred that this positive spike is 

also prevalent in the other stated losses and agreements.  

 Additionally, see Fig. 18 for a detailed Classification Report 

(gauging values of the precision, recall, and f1 score for each class) & 

Fig. 19 for a Confusion Matrix (computing class - based accuracies), both 

derived from the validation set. Furthermore, Fig. 20 shows epoch - wise 

trends for training & testing accuracies & losses.  

 

 

 

 

 

 

 

 

 

Fi gure 18: Graphing c lassification report           Figure 19: Graphing c onfusion matrix  
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Figure 20: Plotting e poch - wise trends for training & testing accuracies & losses  

V. Deep Learning Module 3: Cytopathology  

A. Dataset  

In the context of Cytopatholo gi cal means of diagnosis, I utilized 

the publicly available Breast  Cancer Wisconsin (Diagnostic)  dataset, for 

detecting BC malignancy , and can be accessed from here: 

http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnos

tic ) .  This  dataset  consists of  f eatures  which  are computed from a 

digitized image of a fine nee dle aspirate (FNA) of a breast mass. They 

describe the characteristics of cell nuclei present in the image.  Aside 

from the ID, and diagnosis (m = malignant, B = benign), there are 10 real -

valued features computed for each cell nucleus, and the mean, standa rd 

error, and worst/largest (mean of the 3 largest values) of these features 

are record ed resulting in a total of 30, as follows,  

a) mean, SE, & worst  -  radius (mean of distances from the center to 

points on the perimeter)  

b) mean, SE, & worst  -  texture (standard deviation of gray - scale 

values)  

c) mean, SE, & worst  -  perimeter  

d) mean, SE, & worst  -  area  

e) mean, SE, & worst  -  smoothness (local variation in radius 

lengths)  

f) mean, SE, & worst  -  compactness (perimeter^2 / area -  1.0)  

g) mean,  SE, & worst  -  concavity (severity of concave portions of 

the contour)  

Epoch- wise Loss & Accuracy Trends 

http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
http://archive.ics.uci.edu/ml/datasets/breast+cancer+wisconsin+(diagnostic)
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h) mean, SE, & worst  -  concave points (number of concave portions 

of the contour)  

i) mean, SE, & worst  -  symmetry  

j) mean, SE, & w orst -  fractal dimension ("coastline approximation" 

-  1)  

There are 569 records in total, of which 357 are benign, and 212 

are malignant.  Fig. 21 shows the correlations among and between these 

dimensions  and Fig. 22 shows their distribution .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21: Showing c orrelation heatmap for the dataset  
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Figure 22: Showing d istribution plot s for the selected features  

B.  

B. Preprocessing  

The preprocessing required for th is  dataset is minimal  and requires 

loading the data into a Pandas DataFrame , applying feature scaling + 

normalization, and  split ting  into training, and testing subsets, with a 

ratio of 95: 5.  After the data preprocessing, the training tensor  has the 

shape, ( 541 ,  31) , and the testing tensor , ( 28, 31) , while the output 

tensor is expected to have the shape (2, 1).  

C.  Model Structure  

In terms of structure, I have defined a custom Tensorflow model 

which starts by accepting input tensors in batches of 32 records  into an 

initial Dense layer. It is followed up with 3 sets of Dense layers , all  

of which  carry a ReLu activ ation function, except the last , which  is 

activated via Sigmoid  (causing probability - based predictions/outputs) . 

The gradient descent optimization algorithm used for this is called 

RMSProp. A fully graphed structure of the model is displayed in Fig. 23.  
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Figure 2 3: Displaying model s tructure  

 

D.  Model Results  

See Fig. 2 4 for the validation results computed on the test set.  

  

Overall Accuracy  96. 4949494949 % 

Area Under the Curve  92.9361702128%  

Brier Score/Hamming Loss/Zero - One Classification Loss  0.00877192982 1 

Average Hinge Loss (Non - Regularized)  0.59649122807 7 

Logistic/Crossentropy Loss  0. 19188 1722762   

Cohenôs Kappa (Inter- Annotator Agreement)  0. 981841350749  

Matthews Correlation Coefficient  0. 902003265278  
 

Figure 24: Listing v alidation data ,  revealing the results  

 

Average time to predict BC presence from browser: 11.7 seconds.  




